## 1-Ethoxyphosphole 1-Oxide

Sir:
We wish to report the synthesis of the very reactive heterocyclic phosphinic acid ester, 1-ethoxyphosphole 1 -oxide (I). ${ }^{2.3}$ The ester dimerizes too readily to allow its isolation, but it has been identified by its ultraviolet spectrum and by trapping it as a DielsAlder adduct with cyclopentadiene. The synthesis from 1 -ethoxy-2-phospholene 1 -oxide ${ }^{4}$ is given below.


Both the bromide and the dimethylamino compounds are oils, and although the structures are reasonable on the basis of spectral evidence neither has been obtained pure. The quaternary ammonium iodide, crystallized from ethanol-acetone, melts sharply at $1+1-1+1.5^{\circ}$. Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{19} \mathrm{INO}_{2} \mathrm{P}: \mathrm{C}, 32.65$; H, 5.78: I, 38.33; N, 4.23; P, 9.36. Found: C, $32.73 ; \mathrm{H}, 5.87$; I, $38.40 ; \mathrm{N}, 4.27$; P, 9.35 . The iodide was converted in solution to the corresponding chloride by shaking in water with silver chloride; the resulting salt has an extinction coefficient of less than 2 above $240 \mathrm{~m} \mu$. When the quaternary ammonium salt in $0.0018-0.00046 \mathrm{M}$ solution in ethanol is treated with sodium ethoxide ( 0.01 to $0.0017 . \mathrm{M}$ ) , it reacts at $25^{\circ}$ to produce a compound to which the structure I has been assigned; $\lambda_{\text {max }} 29: 3 \mathrm{~m} \mu(\epsilon 1050)$; the rate constant for the elimination is roughly $10^{2} 1 . /$ mole sec . Compound I (identified by ultraviolet absorption and rate of dimerization) may also be prepared from the bromide, although here the approximate rate constant for its formation is only $3 \mathrm{l} . / \mathrm{mole} \mathrm{sec}$. In ethanol. I undergoes a second-order reaction, with a rate constant at $25^{\circ}$ of $1.551 . / \mathrm{mole}$ sec., and concomitant disappearance of the absorption at $29: 3 \mathrm{~m} \mu$. The rate of the dimerization is about the same in the presence of added potassium iodide, trimethylamine, acetic acid, or excess sodium ethoxide, although the reaction product decomposes in the presence of this last reagent. The phosphinate ester, $I$, is presumably saponified by aqueous alcoholic sodium hydroxide. The ultraviolet maximum of the product is shifted to $2 . S \mathrm{Sm} \mu$, and the optical den-

[^0]sity decreases more slowly; apparently the anion dimerizes less readily than the ester. With a 50 -fold or 100 -fold excess of cyclopentadiene in ethanol at $25^{\circ}$, I reacts with a second-order rate constant of approximately 0.(1) $1 . /$ mole sec to produce the Diels-Alder adduct. II. This compound has been purified by column chromatography over Woelm grade 1 alumina with elution by chloroform, followed by molecular distillation. I nal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{P}: \mathrm{C}, 62.84 ; \mathrm{H}, 7.19$; $\mathrm{P}, 14.74$. Found: $\mathrm{C}, 62.50 ; \mathrm{H}, 7.45$ : $\mathrm{P}, 14.4 \mathrm{~S}$. Principal infrared absorptions occur at 3.22 (shoulder), 3.32, 6.32, 7.50 .8 .22 (broad), 9.65 (broad), 10.52 (broad), 11.72, 11.99, and [3.21 (broad) $\mu$ The complicated n.m.r. spectrum of II is consistent with the structure assigned, although the stereochemistry is uncertain.


1-Ethoxyphosphole 1-oxide is similar in its absorption spectrum to thiophene dioxide, ( $\lambda_{\max } 289 \mathrm{~m} \mu$ ( $\epsilon$ 1230)), but is even more reactive than the latter. Research is continuing with the objective (among others) of preparing phosphinate esters with phosphorus at a bridge position of bicyclic systems.

[^1]
## Aliphatic Cyanates

Sir:
We wish to report the first synthesis of aliphatic cyanates. 1.1a

Reasonably stable cyanates, $\mathrm{R}-\mathrm{O}-\mathrm{C} \equiv \mathrm{N}$, can be prepared if (1) the aliphatic group, $R$, is sufficiently bulky to prevent facile trimerization, and (2) the carbonium ion, $\mathrm{R}^{+}$, is of sufficiently high energy to minimize solvolysis (and rearrangement) of the cyanate under the conditions of synthesis.

Thus 1,4-dihydroxybicyclo[2.2.2]octane, 3-ethoxy-2.2.4.t-tetramethylcyclobutan-1-ol. or neopentyl alcohol, when treated successively with sodium hydride (or butyllithium) and cyanogen chloride, yielded the corresponding cyanates I ( $41 \%$. m1.p. $15 \overline{5}-156^{\circ}$ ), II $\left(30 \% \%\right.$ b.p. $\left(0: 3^{\circ}(0.1 \mathrm{~mm}).\right)$, and $\operatorname{III}\left(4.4 \%\right.$, b.p. $12: 3^{\circ}$ $(1.55 \mathrm{~mm}).)^{2}$


I


II


III
(1) The syntheses oll several aromatic eyatates have recently been re





(2) Satisfactory elemental antases and ta.an. spectra for atl new e.nnt poinnds were .ibtianed.


[^0]:    (1) This research was supproted by the National Science fimundation under (irant No. GP-2048.
    (a) A number of substituted 1 -phenylphospholes have previously been reputed. but are relatively uneactive: F , C. . .eavitt. T. A. Manuel, and F . Johnsout. J. Am. (hem. She, 81, 3163 (1959); E. H. Braye and W. Hübel. Chom. Ind (London: 120) 1959) A. W. Johnson and J. CC Telby, J. (hem. Soc. 212t (1961): J. B. Hendrickwon, R. E. Spenker, and J. J. Sinn. Terohedron lettors 47 (1961): 1. (. M. Camplell, R. C. C.ookson, and M.
     J. Org. Chem. 28, 1822 11963:
    (i3) Preliminary reports describe three 1 -plenylphosphole 1 -nxides: see R. 1:. Donadio. Dissetution Abstr, 20, 495 (1959); E. Foward and R. E. Donadio, Abstracts, 136th National Meeting of the American Chemical society, Atlantic City, N. J., Sept., 1959, p. 100 P .
    

[^1]:    (5) W. J. Bailey and E. W. Curnmins, J. Am. (hem Soc. 76, 1932 (19.74).

    The James Bryast Conaxt Laboratory D. A. Usher
    Harvard U.iversity F. H. Westhermer
    Cambridge, Massachúsetts 02138
    Recelved September 17, 1964

